Offshoring as Process Innovation

Mitsuru Igami

Yale

August 2013

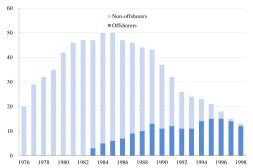
Igami I	(Yal	

・ロト ・回ト ・ヨト ・ヨ

Industry Dynamics of Offshoring

Offshoring

- Labor-market impact: Feenstra & Hanson ('96, '97, '99, '03), Autor et al. ('03), Hsieh & Woo ('05), Feenstra ('10), Ottaviano et al. ('10), Burstein & Vogel ('11), Hummels et al. ('11)
- Product-market impact: ?
- From product-market perspectives, offshoring is:
 - Cost-reducing investment ("process innovation")
 - Possibly "drastic" (Arrow '62)
 - Location change
- Theory predicts fundamental (yet ambiguous) relationships between:
 - Incentives to offshore
 - Market structure (i.e., how many rivals & where)
- So what?
 - Life & death of firms & industries
 - Job destruction \in creative destruction
- This paper
 - Study strategic industry dynamics of offshoring


This Paper

- Questions
 - How does market structure affect offshoring incentives?
 - How does offshoring shape market structure evolution?
- Model: Dynamic oligopoly with radical process innovation
 - Dynamic game, finite horizon, non-stationary
 - Decision to stay North or go South
 - As more rivals offshore...
 - Competitive pressure on global output price
 - Business stealing from home firms
- Approach: Dynamic & structural
 - Estimate
 - 1. Demand (global)
 - 2. Production costs (north & south)
 - 3. Sunk cost of offshoring (& entry/exit)
 - Why bother?
 - Simultaneous evolution
 - What if no offshoring?
 - Welfare analysis of government interventions (in future)
- Data
 - Universe of Hard Disk Drive makers in the world (1976–98)

Igami (Yale)

Why Study Hard Disk?

Relevant

(Number of Firms by Plant Location)

Figure 1: Market Structure and Offshoring

• Feasible

- Long panel (23 years)
- Global coverage (178 firms)
- Details on technology, products, & plant locations

Igami (Yale)

< 🗇 🕨

Data (1 of 4): Why Singapore?

- Why not California?
 - Seagate relocated entire assembly from Scotts Valley to Singapore due to the "high cost, marginal quality and poor availability of labor" in US.
 - Co-founder: "We had too many surfers."
- Labor-cost advantage of offshoring

Year	1983	1985	1988	1990	1993	1995
U.S.	8.83	9.54	10.19	10.83	11.74	12.37
Singapore	1.49	2.47	2.67	3.78	5.38	7.33
Malaysia	-	1.41	1.34	1.39	1.74	2.01*
Thailand	0.43	0.54	0.62	1.03	1.25	1.41
Philippines	0.59	0.55	0.74	1.02	1.07	-
Indonesia	0.13	0.3**	0.38	0.60	0.92***	-

Table 1: Hourly Wage Rate for Manufacturing (US\$)

Note: Current USD. *, **, and *** indicate data in 1994, 1986, and 1992, respectively.

No-nonsense government

- Tax incentives
- Market-friendly industrial policy
- Pool of electronics managers, engineers, technicians, & operators.

Igami (Yale)

Data (2 of 4): Entry & Exit

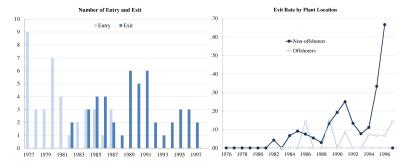


Figure 2: Entry, Exit, and Offshoring

- Massive entry & exit
- Non-offshorers exit more often

<ロト </p>

Data (3 of 4): Price, Quantity, & Market Share

Figure 3: Price, Output, & Market Share

- Falling price
- Rising output
- Growing market share of offshorers

イロト イヨト イヨト イヨ

Data (4 of 4): North vs South

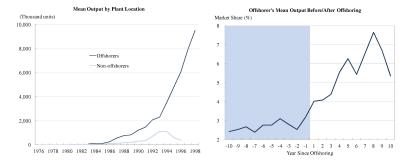


Figure 4: Average Output by Location

- Offshorers sell more than non-offshorers
- More output *after* offshoring

<ロト < 回 > < 回 > < 回 > < 回 >

Model (1 of 2): Overview

• Dynamic discrete game

• Nt firms in North

$$V_{t}(s_{t}) = \pi_{t}(s_{t}) + \max \left\{ \begin{array}{c} \phi \beta E \left[V_{t+1}(s_{t+1}) \left| s_{t} \right] + \varepsilon_{it}^{0}, \\ \beta E \left[V_{t+1}(s_{t+1}) \left| s_{t} \right] + \varepsilon_{it}^{1}, \\ \beta E \left[V_{t+1}^{*}(s_{t+1}) \left| s_{t} \right] - \kappa + \varepsilon_{it}^{2} \end{array} \right\}$$

• N_t^* firms in South

$$V_{t}^{*}(s_{t}) = \pi_{t}^{*}(s_{t}) + \max \left\{ \begin{array}{c} \phi \beta E \left[V_{t+1}^{*}(s_{t+1}) | s_{t} \right] + \varepsilon_{it}^{0}, \\ \beta E \left[V_{t+1}^{*}(s_{t+1}) | s_{t} \right] + \varepsilon_{it}^{1} \end{array} \right\}$$

Model (2 of 2): Timeline

- In each year t
 - 1. Potential entrants (∞):
 - Observe market structure $s_t = (N_t, N_t^*)$
 - Sequentially decide whether to enter: free entry

$$\max\left\{ V_{t}\left(s_{t}\right) -\kappa_{t}^{ent},0\right\}$$

- Actual entrants become active in North
- 2. Each active firm i (incumbents + actual entrants):
 - Observes updated s_t & private cost shocks $(\varepsilon_{it}^0, \varepsilon_{it}^1, \varepsilon_{it}^2)$
 - Decides whether to: {exit, stay North, go South}
 - If already in South, whether to exit
- 3. Active firms earn period profits

$$\pi_t^l(N_t, N_t^*)$$

4. Decisions implemented & state evolves

イロン イ部ン イヨン イヨ

Estimation (1 of 4): Demand

- \bullet Steps: (1) demand \rightarrow (2) supply \rightarrow (3) dynamics
 - Industry demand: Differentiated products

$$\ln\left(\frac{ms_{jt}}{ms_{0t}}\right) = \alpha_1 p_{jt} + \alpha_2 g_j + \alpha_3 x_j + \xi_{jt},$$

Model:	L	Logit		Nested Logit		
Estimation method:	OLS	IV		OLS	IV	
	(1)	(2)		(3)	(4)	
Price (\$000)	93**	-3.28***		05	-1.63^{***}	
Nests of Diameters	-	-	.9	98***	.49***	
Diameter = 3.5-inch	1.75***	.91**	2.	24***	1.70***	
Log Capacity (MB)	.04	1.20***		.08	.65***	
Adjusted R ²	.50	.27		.80	.67	
Num. obs.	405	405		405	405	

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

IVs for p_{jt}

- Prices in other region/user (Hausman-Nevo)
- Num. of product models/firms (Bresnahan-BLP)
- Years since standard established
- Unpredictable changes in unobserved quality (Sweeting)

イロト イヨト イヨト イヨト

Estimation (2 of 4): Supply

- Cost of production
 - Invert the estimated demand system
 - Firm i's FOC (Cournot with cost=location heterogeneity)

$$q_{it}: P_t + \frac{\widehat{\partial P}}{\partial Q}q_{it} = \widehat{mc_{lt}}$$

Figure 5: Estimated Cost Advantage of Offshore Production

Estimation (3 of 4): Dynamic Game

- Cost of offshoring (& entry/exit)
 - Algorithm: Nested Fixed Point (c.f., Rust '87)
 - 1. Try some (κ,ϕ)
 - 2. Solve for Equilibrium
 - Perfect Bayesian Equilibrium
 - Backward induction, from year 1998
 - For each state-year, find a fixed point of strategies & beliefs
 - Simultaneous-move vs Sequential-move
 - 3. Pick (κ, ϕ) with maximum likelihood
 - 4. Free entry: $V_t (N_t, N_t^*) \leqslant \hat{\kappa}_t^{ent} \leqslant V_t (N_t 1, N_t^*)$
 - Data variation: Time-series of entry/exit/offshoring

Table 2: Estimated Offshoring Cost, Entry Cost, and Sell-off Value

Parameter	Unit	ML Estimate
Sunk Cost of Offshoring (κ)	Billion \$	3.20
Sunk Cost of Entry (κ^{ent})	Billion \$	5.47*
Sell-off Value (ϕ)	Fraction of firm value	.48

Note: * annual average over the sample period.

イロト イヨト イヨト イヨ

Estimation (4 of 4): Equilibrium Profits & Values

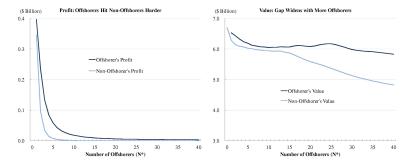
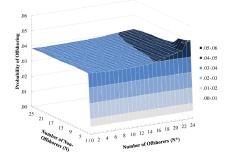
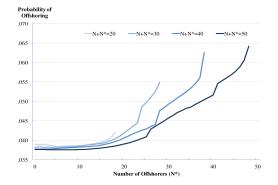



Figure 6: Effects of Market Structure on Profits & Values

- Profits
 - Drop fast as $N^* \uparrow$ (faster for non-offshorers)
 - Due to $P \downarrow \&$ business stealing
- Values
 - Decreasing in $N^* \Longrightarrow \Pr(exit) \uparrow \text{ in } N^*$
 - Gap $(V^* V) \uparrow$ in $N^* \Longrightarrow \Pr(offshore) \uparrow$ in N^*

Igami (Yale)

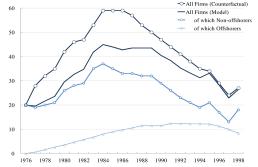

Finding (1 of 3): How Market Structure Affects Offshoring

- Pr(offshore) initially \uparrow then \downarrow in N
 - "Replacement effect" (Arrow '62) dominates when N = 1
 - "Efficiency effect" (Gilbert & Newbery '82) dominates when N > 1
- $\Pr(offshore)$ monotonically \uparrow in N^*
 - Disproportionate competitive pressure: "fly or die"
 - Hence $Pr(offshore) \uparrow in N^*/N$ when N > 1

Image: A math a math

Finding (1 of 3): How Market Structure Affects Offshoring

• How does Pr(offshore) change with N^*/N ?


- Fix total $\overline{N} = N + N^*$ and vary N^* (& hence N^*/N)
- Offshoring breeds offshoring

• • • • • • • • • • •

Finding (2 of 3): How Offshoring Shapes Market Structure

- World without Singapore
 - Offshoring cost prohibitively high: $\kappa = 4\hat{\kappa}$

(Number of Firms by Plant Location)

- Relative to "no-offshoring" scenario, the possibility of offshoring:
 - Discourages entry & encourages $N \downarrow$ "fly or die"
 - Accelerates "shake-out" (i.e., mass exits in maturing industry)
 - Yet pro-competitive: $P \downarrow$, $Q \uparrow$, $SW \uparrow$ (due to innovation race)

Igami (Yale)

Aug 2013 17 / 22

Finding (3 of 3): Offshoring in Industry Life Cycle

- Incentives to offshore vary with (endogenous) life cycle
 - Initially low (:: still small market)
 - Mid '80s: more (:: demand growth & competitive pressure)
 - Mid '90s: fly or die (:: N*/N keeps rising)

Table 3:	Evolution	of Market S	tructure and	Offshoring/	Innovation	Incentives
----------	-----------	-------------	--------------	-------------	------------	------------

Phase	Pr(offshore) Pr(exit)	Entry	Ν	N *	$N + N^*$	N* / N
I. Early	Low	Many	Î	Î	Ŷ	\longrightarrow
II. Middle	Medium	Few	\downarrow	Î	\longrightarrow	Î
III. Later	High	None	\downarrow	\longrightarrow	↓	1

Note: Based on estimates and descriptive statistics.

• Is offshoring "drastic" innovation? (Arrow '62)

- No, in the static sense
- Yes, in the dynamic & strategic sense

イロン イ部ン イヨン イヨ

- Ban on offshoring
 - Same as "No Singapore" simulation
- Evaluating government interventions
 - Timing matters (:: offshoring incentives change with life cycle phase)
 - Table/Figure, coming soon

・ロト ・日下・ ・ ヨト・

Conclusion

- Offshoring as process innovation
 - Offshoring breeds offshoring: strategic complementarity
 - Explains labor-market findings: "displacement from a firm with rising offshoring generates larger and more persistent wage and earnings losses" (Hummels et al. '11)
 - Dynamically pro-competitive & accelerates shake-out
 - Dynamically "drastic" innovation
 - One innovator/offshorer may not drive out others, but
 - Pressure on others to "fly or die"
 - Eventually & collectively "drastic"
- Planner's dilemma
 - Offshoring accelerates itself
 - Timing matters
 - Stop offshoring early?
 - Home industry will die (or survive on expensive life support)
 - Think creative destruction, not just job destruction

<ロト </p>

Appendix: Persistent Firm Heterogeneity? (1 of 2)

• Firm size dynamics

Figure 7: Seemingly Random Patterns of Firm Heterogeneity

Igami I	(Yal	

Aug 2013 21 / 22

メロト メポト メヨト メヨ

Self-selection

Quartile based on	Number of	% offshored by 1991	% exited by 1991
1976–85 market share	Firms		(without offshoring)
1st quartile	11	36.4	36.4
2nd quartile	11	27.3	63.6
3rd quartile	11	36.4	36.4
4th quartile	11	18.2	63.6

Table 4: Do Better Firms Self-Select into Offshoring?